
 

 

 

 

 

 

 

 

 

Abstract: 

 Phase coding and linear frequency modulation are 
commonly used in radar and sonar systems for pulse 
compression to achieve high range resolution. In this paper, 
the performance of the liner frequency modulated (LFM) pulse, 
normalized liner frequency modulated (NLFM) pulse and 
stepped frequency modulated (SFM) pulse are evaluated in the 
presence of Additive White Gaussian Noise (AWGN) using 
Adaptive Least Mean Square algorithm and particle swarm 
optimization. Doppler performance is evaluated using the 
metrics PSLR3 and ISRL3. The results show significant 
improvement with the proposed algorithms.   

Key Words: Complementary sequences, Auto correlation, 
PSLR3, ISLR3, Adaptive LMS algorithm, Particle swarm 
optimization. 
 

I. INTRODUCTION 

Pulse compression techniques involve transmission 
of a long coded pulse and compression of the received 
echo using matched filter to obtain a narrow pulse [1, 2]. 
As a result, in an increased detection performance 
associated with a long–pulse radar system while still 
maintaining the fine range resolution of a short–pulse 
system. The matched filter maximizes the output signal 
to noise ratio (SNR) [1,2,10]. A measure of degree to 
which the pulse is compressed is given by the 
compression ratio defined as                 

       TBTCR ==
τ                              

(1) 

Where, T= transmitted pulse length, B
1=τ  = 

Compressed pulse length, and B is the bandwidth of the 
transmitted waveform. For range resolution radar, a coded 
waveform or a sequence can be taken as 
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with aperiodic autocorrelation  

                     ( ) ∑
−−

=
+=

kN

i
kii xxkr

1

0
                         (3) 

                           where  k = 0, 1, 2,…, N–1   

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 For coded waveform to be good, the ambiguity 
function should have very large peak for zero shift with 
very small side lobes in Doppler as well as range domains 
[3,4,5,7].  
 
 Pulse compression radar waveforms offer several 
advantages over uncompressed waveforms. First, a 
significant increase in unambiguous range can be obtained 
within transmit power limitations. Second, range and 
Doppler resolution can be greatly improved. The idea of 
pulse compression is not new and formally came about 
from Woodward's work [l0] in 1953. His radar waveform 
analysis and mathematical framework allowed the 
realization that range resolution is a function of bandwidth 
rather than pulse width. 
 Pulse compression is performed by correlating the 
received sequence with a filter represented by a stored set 
of filter coefficients. The filter may be a matched filter (in 
time and amplitude) or mismatched, in time, amplitude, 
and phase, designed to realize improvements in pulse 
compression parameters beyond those of the matched filter 
performance. By implementing a mismatched filter to 
reduce correlation side lobes [11, 12, 13, 14], some of this 
SNR processing gain and/or target resolution is lost. The 
benefit of using a matched filter is that it maximizes the 
gain in signal-to-noise ratio (processing gain).  
 
 In realistic environments, targets of interest are 
often in motion and it is often the Doppler phase shift 
induced by this relative motion between the radar and a 
target that can enable the detection of a target when it is in 
the presence of stationary background clutter. However, 
large Doppler shifts over the length of a single pulse (i.e., 
the radar waveform), which are caused by high relative 
target velocities and/or the use of long waveforms, can be 
quite detrimental to radar detection performance due to 
severe mismatch between the expected and actual received 
waveforms (even when using Doppler-tolerant waveforms 
such as linear FM [2]. The result of this mismatch is 
reduced target SNR as well as an overall increase in range 
sidelobe levels. In fact, a very high time-bandwidth 
product coupled with extraordinarily high target velocity 
can cause relativistic effects [15,16,17] whereby the 
reflected radar waveform undergoes dilation in time thus 
exacerbating the mismatch, though such extreme effects 
are not considered here. It is well known that a bank of 
phase-shifted matched filters tuned to the expected target 
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velocities can compensate for the SNR loss due to Doppler 
mismatch. However, this does nothing to address the 
inherent range sidelobes of the matched filter. For LS-
based mismatched filters, the effects of large Doppler can 
be more severe since it is inherently more sensitive than 
matched filtering and because LS estimation is known to 
be non-robust to deviations from the assumed signal model 
[18]. 
 
 Recently, an adaptive approach based upon a 
recursive implementation of minimum mean-square error 
(MMSE) estimation known as adaptive pulse compression 
(APC) has been developed [19,20,21] which is capable of 
almost complete range sidelobe mitigation thereby 
enabling estimation of the range profile illuminated by a 
radar to the level of the noise.  
  
 This paper deals with comparison of the Doppler 
performance for different frequency coded signals by using 
the adaptive techniques.  
 
 

II. ADAPTIVE LMS 
 

Adaptive filters [6] are digital filters that have their 
filter coefficients changed by an algorithm. Here Least 
Mean Squared (LMS) [6] algorithm is used for 
processing the signal.  

The computational procedure for the LMS algorithm 
is summarized below: 

1. Initially, set each weight wk(i), i=0,1,…,N-1, 
to an arbitrary fixed value, such as 0. 

For each subsequent sampling instant, k=1,2,…, carry 
out steps (2) to (4) below: 

2. Compute filter output  
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3. Compute the error estimate  

kkk nye ˆ−=  

4. Update the next filter weights  

( ) ( ) ikkkk xeiwiw −+ += μ21  

The simplicity of the LMS algorithm and ease of 
implementation, evident from the above, make it the 
algorithm of first choice in many real-time systems. The 
LMS algorithm requires approximately 2N+1 
multiplications and 2N+1 additions for each new set of 
input output samples. 

 

III. PARTICLE SWARM OPTIMIZATION 
(PSO) 

Kennedy and Eberhant [8] proposed an approach 
called “Particle Swarm Optimization” which was 
inspired on the choreography of bird flock. It is a 
population based search algorithm that exploits a 
population of individuals to probe promising regions of 
the search space. In the context, the population is called 
a swarm, and individuals are called particles. Each 
particle moves with an adaptable velocity with in the 
search space and retains in its memory the best position 
it ever encountered. 

Considering a D-dimensional search space, an 
thi particle is associated with the position attribute  

[ ]Diiii xxxX ,2,1, ,......,= and velocity attribute 

[ ]Diiii vvvV ,2,1, ,......,= . The best position encountered 

by the thi  particle is denoted as 
[ ]Diiii pppP ,2,1, ,......,= . Assume g to be index of the 

particle that attained the best position found by all 
particles in the swarm. The swarm is manipulated in the 
same form resembling the following equations 

[ ] [ ] [ ] [ ]( )
[ ] [ ]( )ipresentigbestrandc

ipresentipbestrandciviv
−+

−+=+
**2

**11

                                                                      (4) 

[ ] [ ] [ ]11 ++=+ ivipresentipresent                      (5) 

Where i=1,2, … … Np is the particles index, d=1,2, 
… …,D is the dimension index and t=1,2, .. indicates the 
iteration number. The variable C1 and C2 are positive 
constants, which are referred to as cognitive and social 
parameters, respectively and rand is a function which 
generates a random number that is uniformly distributed 
within the interval {0,1}. The variable w is a parameter 
called inertia weight, which plays the role of balancing 
the global and local searches. It is positive linear 
function of iteration, given as  

( )
iterationimum
iterationwwww startlast

last max
*−−=                     (6) 

IV. PERFORMANCE EVALUATION AND 
SIMULATION STUDIES 

The resolution properties of signal in range and 
Doppler are represented by Ambiguity function (AF) 
[1,2].  This is given by [10] 

∫
∞

∞−

∏∗ += dtetutuf tfj
d

d2)()(),( ττχ
    (7) 

 In other words, χ(0,0) to be very  large and χ 
(k≠0,l≠0) to be ideally zero is required. In this Doppler 
domain, the goodness of a sequence is judged by the Peak 
Side Lobe Level Ratio3 (PSLR3) [10] and Integrated Side 
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Lobe Level Ratio3 (ISLR3)[ 10 ] which are given by the 
equations (10) and (11). 
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V. RESULTS 
By using the above-mentioned algorithms the values 

of PSLR3 and ISLR3 are obtained at various noise 
levels.  

 
Fig.1   ISLR3 of Linear Frequency Modulation Using LMS and PSO 

 

 
Fig.2 PSLR3 of Linear Frequency Modulation Using LMS and PSO 

 

Fig.3 ISLR3 of Non-Linear Frequency Modulation Using LMS and 
PSO 

 
Fig.4. PSLR3 of Non-Linear Frequency Modulation Using LMS and 

PSO 

 Fig.5 ISLR3 of Stepped Frequency Modulation Using LMS and PSO 

 

Fig.6 PSLR3 of Stepped Frequency Modulation Using LMS and PSO 

 
Fig.7. Ambiguity function of LFM after removal noise using LMS 
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Fig.8. Ambiguity function of NLFM after removal noise using LMS 

 
Fig.9 Ambiguity function of Stepped LFM after removal noise using 

LMS 

 
Fig.1 to Fig.6 shows the PSLR3 and ISLR3 for 

LFM, NLFM and Stepped LFM in the presence of 
Additive White Gaussian Noise (AWGN) using LMS 
algorithm, PSO.   

Fig.1 to Fig.2 shows PSLR3 and ISLR3 for linear 
frequency modulation using LMS algorithm and PSO. 
The integrated side lobe level ratio3 (ISLR3) and peak 
side lobe level ratio3 (PSLR3) for PSO is superior 
compared to LMS algorithm by 3.5dB. 

Fig.3 to Fig.4 shows PSLR3 and ISLR3 for non linear 
frequency modulation (NLFM) using LMS algorithm 
and PSO. The integrated side lobe level ratio3 (ISLR3) 
and peak side lobe level Ratio3 (PSLR3) for PSO is 
superior compared to LMS algorithm by 4dB. 

Fig.5 to Fig.6 shows PSLR3 and ISLR3 for stepped 
frequency modulation (SFM) using LMS algorithm and 
PSO. The integrated side lobe level ratio3 (ISLR3) and 
peak side lobe level Ratio3 (PSLR3) for PSO is superior 
compared to LMS algorithm by 5dB. 

Fig.7 to Fig.9 shows the ambiguity diagrams after 
removal of noise using LMS algorithm for LFM, NLFM 
and Stepped LFM respectively. 

In all cases, the extensive simulation studies indicate that 
the stochastic based particle swarm optimization is 
outperforming the gradient based LMS algorithm. 

VI. CONCLUSION 

From the above results we can conclude that the 
Particle Swarm Optimization technique which is soft 
evolutionary computing technique yields better 

performance when compared to Least Mean Square 
Algorithm for getting best performance of Doppler in 
Pulse Compression. Other optimization Techniques such 
as Genetic Algorithm, Honey bee, Differential 
Evolution, etc. techniques can be used for yielding better 
performance. 

ACKNOWLEDGEMENT 

The authors wish to thank Prof. Ganapathi Panda, 
Deputy Director of IIT-BBS for giving the idea to carry 
out research in this area. Also authors acknowledge Sri 
Dadi Ratnakar, Correspondent, DIET for providing all 
the facilities and necessary help to carry out research in 
the college. 

REFERENCES 

[1]   Nadav Levanon, RADAR SIGNALS, IEEE   Press, Wiley 2004 
[2]   Merrill I. Skolnik INTRODUCTION TO RADAR SYSTEMS, Third 

edition  
[3] Anand K. Ojha CHARACTERISTICS OF COMPLEMENTARY 

CODED RADAR WAVEFORMS IN NOISE AND TARGET 
FLUCTUATIONS, IEEE Radar Conference, 1993. 

[4] P.Srihari et al, PERFORMANCE OF DIFFERENT 
COMPLEMENTARY SEQUENCES, International Radar 
Symposium India-2007(IRSI-2007) 

[5]  V.Bhagel, P.Srihari, PERFORMANCE EVALUATION OF 
PHASE CODED RADAR SIGNALS USING FUNCTIONAL 
LINK ARTIFICIAL NEURAL NETWORK, International Radar 
Symposium India-2007(IRSI-2007) 

[6] B. Widrow and S. D. Stearns, “ADAPTIVE SIGNAL 
PROCESSING”, Pearson Education, 2002. 

[7] D.G. Khairnar, S.N. Merchant and U.B. Desai: “RADIAL BASIS 
FUNCTION NEURAL NETWORK FOR PULSE RADAR 
DETECTION”, IET Radar Sonar Navig., 2007, 1, (1), pp. 817. 

[8] Kennedy and R. C. Eberhart, “SWARM INTELLIGENCE”. San 
Mateo, CA: Morgan Kaufmann, 2001. 

[9] Ackroyd, M.H., and Ghani, F “OPTIMUM MISMATCHED 
FILTERS FOR SIDELOBE SUPPRESSION”, IEEE Transactions 
on Aerospace and Electronic Systems, Vol.9, 214-218, March 
1973. 

[10] K.Sudhakar, SIGNAL DESIGN STUDIES FOR SONAR 
SCENARIO, PhD Thesis Andhra University, 2007 

[11]  P. M. Woodward, ed., PROBABILITY AND INFORMATION 
THEORY, With Applications to Radar. 330 West 42nd  Street, 
New York 36, NY: McGraw-Hill Book Co., Inc., 1953 

[12]   V. C. Vannicola, T. B. Hale, M. C. Wicks, and P. Antonik, 
“AMBIGUITY FUNCTION ANALYSIS FOR THE CHIRP 
DIVERSE WAVEFORM (cdw),” in Proceedings of the 2000 
IEEE International Radar Conference, pp. 666-671, May 2000.  

[13] A. W. Rihaczek, ed., PRINCIPLES OF HIGH RESOLUTION 
RADAR. New York, NY: McGraw-Hill, Inc., 1969. R. S. 
Berkowitz, ed., Modern Radar, Analysis, Evaluation, and System 
Design. New York, NY: John Wiley & Sons, Inc., 1965.  

[14] G. V. Morris, ed., AIRBORNE PULSED DOPPLER RADAR. 
685 Canton Street, Norwood, MA 02062: Artech House, Inc., 
1988 

[15] Altes, R. OPTIMUM WAVEFORMS FOR SONAR VELOCITY 
DISCRIMINATION. Proceedings of the IEEE, 59, 11 (Nov. 
1971), 1615—1617. 

[16]  RADAR DESIGN PRINCIPLES (2nd ed.). Raleigh, NC: SciTech 
Publishing, 1999, 362—363. 

[17] Zeng, Y., Lin, Z., Bi, G., Yeo, J., and Lu,,S. DILATION 
DEPENDENT MATCHED FILTERING FOR SAR SIGNAL 
PROCESSING. IEEE Transactions on Aerospace and Electronic 
Systems, 41, 2 (Apr. 2005), 729—736. 

[18] Kay, S. M. FUNDAMENTALS OF STATISTICAL SIGNAL 
PROCESSING: ESTIMATION THEORY. Upper Saddle River, 
NJ: Prentice-Hall, 1993, 219—286, 344—350. 

[19] Blunt, S. D., and Gerlach, K. A NOVEL PULSE 
COMPRESSION SCHEME BASED ON MINIMUM MEAN-

9th International Radar Symposium India - 2013 (IRSI - 13)

NIMHANS Convention Centre, Bangalore INDIA 4 10-14 December 2013



SQUARE ERROR ITERATION. In Proceedings of the IEEE 
International Radar Conference, Sept. 3—5, 2003, 349—353. 

[20] Blunt, S. D., and Gerlach, K. ADAPTIVE PULSE 
COMPRESSION. In Proceedings of the IEEE National Radar 
Conference, Apr. 26—29, 2004, 271—276. 

[21] Blunt, S. D., and Gerlach, K. ADAPTIVE PULSE 
COMPRESSION VIA MMSE ESTIMATION. IEEE 
Transactions on Aerospace and Electronic Systems, 42, 2 (Apr. 
2006), 572—584. 

 
 

BIODATA OF AUTHOR(S) 

Dr.Pathipati Srihari Born in 1977 in Nellore, 
Andhra Pradesh. Graduated in B.Tech, ECE from 
Sri Venkateswara University in 2000 and did 
Master’s degree in communications Engineering and 
Signal Processing from University of Plymouth, 
England, UK.. Completed PhD from Andhra 
University in the field of Radar Signal Processing. 
And presently working as Assistant Professor in 

National Institute of Technology Karnataka, Surathkal, Mangalore, 
India. He received JNTU Kakinada Best Teacher Award and JNTU 
Kakinada Best Researcher Award in the year 2009. He is an active 
volunteer of IEEE for ten years. He also received IEEE Asia Pacific 
Outstanding Branch Counselor Award in the year 2010. 

 G.N.Satapathi has received B.Tech from Vignan’s 
Institute of Information and Technology, 
Visakhapatnam in 2010. Completed M.Tech from 
Dadi Institute of Engineering and Technology, 
Visakhapatnam in 2010. Presently he is pursuing 
Ph.D in NITK, Karnataka.  He is a student member 
of IETE (SC846357), Member of IET 

(1100260804), Member of IEEE (92103784).  He completed Praveena 
(DBHP, Chennai) in the year 2004. His interested areas of working are 
Digital Image Processing, Digital Signal Processing, and Neural 
Networks. 
 

B. Sashi Kanth completed my B.Tech from Pydah 
college of engineering and technology on 2007. He 
completed M.Tech from GITAM University with 
Digital Systems and signal processing on 2010. He 
worked as Asst. professor from 2010 to 2012 at Al-
Aman College of engineering and continuing the 
services at DIET from 2012 to till date. He had 
published 5 papers in International conference from 

2010 to 2013. 

S. Sree Devi has 8 years of experience as a senior 
technician in department of ECE,  Dadi Institute of 
Engineering & Technology and she is currently 
pursuing final year B.Tech (ECE) at School of 
Distance education, Andhra University College of 
Engineering, Visakhapatnam. She is a member of 
IEEE. 

 

 

 

 

 

 

 

9th International Radar Symposium India - 2013 (IRSI - 13)

NIMHANS Convention Centre, Bangalore INDIA 5 10-14 December 2013




